Abstract

We analyze spectropolarimetric data taken with the Hinode spacecraft in quiet solar regions at the disk center. Distorted redshifted Stokes $V$ profiles are found showing a characteristic evolution that always follows the same sequence of phases. We have studied the statistical properties of these events using spectropolarimetric data from Hinode/SP. We also examined the upper photosphere and the low chromosphere using Mg i b2 and Ca ii h data from Hinode. Finally, we have applied the SIRGAUSS inversion code to the polarimetric data in order to infer the atmospheric stratification of the physical parameters. We have also obtained these physical parameters taking into account dynamical terms in the equation of motion. The Stokes V profiles display a bump that evolves in four different time steps, and the total process lasts 108 seconds. The Stokes I shows a strongly bent red wing and the continuum signal exhibits a bright point inside an intergranular lane. This bright point is correlated with a strong redshift in the Mg i b2 line and a bright feature in Ca ii h images. The model obtained from the inversion of the Stokes profiles is hotter than the average quiet-Sun model, with a vertical magnetic field configuration and field strengths in the range of kG values. It also presents a LOS velocity stratification with a Gaussian perturbation whose center is moving to deeper layers with time. We have examined a particular type of event that can be described as a plasmoid of hot plasma that is moving downward from the top of the photosphere, placed over intergranular lanes and always related to strong magnetic field concentrations. We argue that the origin of this plasmoid could be a magnetic reconnection that is taking place in the chromosphere.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call