Abstract
A deep-sea Neutrino Telescope of at least 1 km 3 size (KM3NeT) is being designed to search for high-energy (1–1000 TeV) neutrinos originating from galactic and extragalactic sources. The detection principle exploits the measurement of Cherenkov light emitted by charged particles resulting from neutrino interactions in the matter surrounding the telescope. An optical module containing an array of 31 3-in. diameter photomultiplier tubes is a promising alternative to an optical module containing one 10-in. diameter phototube. The single photo-electron response of 3-in. diameter phototubes (Photonis XP53B20 and ETEL 9822B) has been investigated. Phototube characteristics such as the collection efficiency, transit-time spread and peak-to-valley ratio were determined at various positions across the photocathode surface in a remote-controlled 2D scanning system. Results of these investigations are reported and the perspectives to employ the investigated phototube types in the Multi-PMT optical module of the future KM3NeT detector are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.