Abstract

A novel light-operated vehicle for targeted intracellular drug delivery is constructed using photosensitizer-incorporated G-quadruplex DNA-capped mesoporous silica nanoparticles. Upon light irradiation, the photosensitizer generates ROS, causing the DNA capping to be cleaved and allowing cargo to be released. Importantly, this platform makes it possible to develop a drug-carrier system for the synergistic combination of chemotherapy and PDT for cancer treatment with spatial/temporal control. Furthermore, the introducing of targeting ligands further improves tumor targeting efficiency. The excellent biocompatibility, cell-specific intracellular drug delivery, and cellular uptake properties set up the basis for future biomedical application that require in vivo controlled, targeted drug delivery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.