Abstract
Metal-organic frameworks (MOFs) are a versatile toolbox for the bioinspired design of nanozymes for antibacterial applications and beyond, however, designing a nanozyme by the hierarchical quasi-MOF scheme remains largely unpracticed. This work exemplifies the preferential structure-activity correlation of a bimetallic quasi-MOF (Q-MOFCe0.5 ) among three series of MOF-derived peroxidase (POD) mimics. The biomimetic quasi-MOFCe0.5 nanosheets accommodate both oxygen vacancy-coupled multivalent redox cycles and photosensitive energy band layout, benefiting from the hierarchical heterojunction-like 0D/2D interface featuring isolated nodes-derived CeOCu sites upon the 2D decarboxylated MOF scaffold. These integrated unique merits enable the POD-like Q-MOFCe0.5 to generate sustained reactive oxygen species to effectively eradicate the surface-adhered bacteria under visible light, resulting in significant inactivation of Escherichia coli (99.74 %) and Staphylococcus aureus (99.35%) in vitro, and potent disinfection of skin wounds in vivo in safe and on-demand manners. It is hoped that this work can intensify the interventions of MOF nanozymes against the microbial world.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.