Abstract

The well-established oxidative addition-reductive elimination pathway is the most followed one in transition metal-catalysed cross-coupling reactions. While readily occurring with a series of transition metals, gold(I) complexes have shown some reluctance to undergo oxidative addition unless special sets of ligands on gold(I), reagents or reaction conditions are used. Here we show that under visible-light irradiation, an iridium photocatalyst triggers-via triplet sensitization-the oxidative addition of an alkynyl iodide onto a vinylgold(I) intermediate to deliver C(sp)2-C(sp) coupling products after reductive elimination. Mechanistic and modelling studies support that an energy-transfer event takes place, rather than a redox pathway. This particular mode of activation in gold homogenous catalysis was applied in several dual catalytic processes. Alkynylbenzofuran derivatives were obtained from o-alkynylphenols and iodoalkynes in the presence of catalytic gold(I) and iridium(III) complexes under blue light-emitting diode irradiation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.