Abstract

The oxidation of proteins and, in particular, of tryptophan (Trp) residues leads to chemical modifications that can affect the structure and function. The oxidative damage to proteins in photochemical processes is relevant in the skin and eyes and is related to a series of pathologies triggered by exposure to electromagnetic radiation. In this work, we studied the photosensitized formation of N-formylkynurenine (NFKyn) from Trp in different reaction systems. We used two substrates: free Trp and a peptide of nine amino acid residues, with Trp being the only oxidizable residue. Two different photosensitizers were employed: Rose Bengal (RB) and pterin (Ptr). The former is a typical type II photosensitizer [acts by producing singlet oxygen (1O2)]. Ptr is the parent compound of oxidized or aromatic pterins, natural photosensitizers that accumulate in human skin under certain pathological conditions and act mainly through type I mechanisms (generation of radicals). Experimental data were collected in steady photolysis, and the irradiated solutions were analyzed by chromatography (HPLC). Results indicate that the reaction of Trp with 1O2 initiates the process leading to NFKyn, but different competitive pathways take place depending on the photosensitizer and the substrate. In Ptr-photosensitization, a type I mechanism is involved in secondary reactions accelerating the formation of NFKyn when free Trp is the substrate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.