Abstract

This work describes the results of the Cd(II) isopropylxanthate-stabilized and Mn(III) isopropylxanthate-sensitized photo-oxidation of poly(2,6-dimethyl-1,4-phenylene oxide) film in air at low temperatures (−10 to 80°). The oxidation was followed by light scattering, potassium ferri-oxalate actinometry and by measuring gel formation. The weight-average molecular weight, degree of degradation, rate of scission of links, energy of activation and quantum yield of the process depend on several factors, e.g. temperature, xanthate concentration. Various oxygen-containing groups (hydroperoxides, carbonyls, etc.) are formed in the polymer. For the determination of the content of these groups, iodometry and spectroscopy were applied. The initially present or photo-induced hydroperoxides are directly responsible for subsequent oxidative reactions which occur during 254-nm irradiation. The absorption spectra of the degraded materials in the u.v. and i.r. regions were also studied to substantiate a possible mechanism of the oxidation process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call