Abstract

Localized heating with a flame is shown to be a simple and effective method for substantially augmenting the photosensitivity of high-silica optical waveguides to (UV) light. The method increases the photosensitivity of standard (Ge-doped core) telecommunications fiber by a factor greater than 10 (photoinduced Deltan(uv) > 10(-3)) and renders strongly photosensitive the cores of high-quality Ge:SiO(2)-on-Si and Ge:SiO(2)-on-SiO(2) planar waveguides that were negligibly photosensitive before treatment. We have written large-modulation-depth Bragg gratings, in both fiber and planar optical waveguides photosensitized by our method, using KrF (249-nm) radiation incident upon the waveguides through a zero-order-nulled phase mask. It is noteworthy that photosensitization by our method is achieved with a negligible increase in loss at the three principal optical communication windows.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call