Abstract
Photosensitizers based on the carbazole structure were designed and developed for cationic polymerization. Along with triarylsulfonium and diaryliodonium salts, the carbazole derivatives showed a high photosensitization effect in the cationic photopolymerization of epoxides. The photophysical properties of the carbazole derivatives were studied in terms of electronic absorption, fluorescence, and phosphorescence spectrometry. Moreover, a unique photosensitization mechanism of the carbazole derivatives was discussed after studies of the fluorescence quenching, redox behavior, and kinetics of the photopolymerization by time-resolved fluorescence spectrometry, cyclic voltammetry, and photo differential scanning calorimetry, respectively. The results confirmed the redox photosensitization of the carbazole derivatives in cationic polymerization. The photosensitization of the carbazole and its ring or N-alkylated derivatives occurred predominantly in singlet excited states at the rate of the diffusion limit, whereas the carbazole derivatives with carbonyl substituents sensitized onium salts via triplet excited states on the basis of the Rehm–Weller equation in the photoinduced electron-transfer process. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 90–100, 2000
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Polymer Science Part A: Polymer Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.