Abstract

The decay kinetics of photoluminescence (PL) of Eu3+ ions (the 5D0→7Fj transition) excited by UV radiation (in particular, by a laser) is studied in a Vycor nanoporous glass and transparent polymers doped with Eu(fod)3 molecules (where fod stands for 6,6,7,7,8,8,8-heptofluor-2,2-dimethyl-3,5-octadionate) using a solution of supercritical CO2. It is found that the decrease in the PL intensity is caused by the photoinduced transformation of the ligand component of the complex (fod), while the decay rate depends significantly on the type of the matrix. Models of mechanisms of photodissociation of the original complex related to excitation to the singlet absorption band of the ligand (S0→S1 transition) in one case and to the ligand—metal charge transfer band in the other case are proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call