Abstract

A project was carried out aimed at reducing the coefficient of thermal expansion (CTE) of photosensitive polyimide formulations (photoresists) through the incorporation of small amounts of an organoclay. The organoclay was formed by a cation exchange reaction between a NA+-montmorillonite clay and an ammonium salt of dodecylamine. Two polyimide precursors, a poly(amic ester) (PAE) and a poly(amic acid) (PAA), were used in this study. The PAE was prepared by direct polymerization of 2,2′-bis-(3-amino-4-hydroxyphenyl)hexafluoropropane and bis(n-butyl)ester of pyromellitic acid in the presence of phenylphosphonic dichloride as an activator. The polymer had an inherent viscosity of 0.23dL/g. The PAA copolymer was prepared by polymerization of pyromellitic dianhydride, oxydiphthalic anhydride and oxydianiline. The polymer had an inherent viscosity of 1.00dL/g. Two photosensitive resin/clay formulations were prepared from these two PI precursors using 2,3,4-tris(1-oxo-2-diazonaphthoquinone-5-sulfonyloxy)-benzophenone as the photosensitizer and 3wt% organoclay. The films obtained from the PAA formulation were transparent and tough, while the films prepared from the PAE formulation were opaque and brittle. Both X-ray diffraction and transmission electron microscope analyses showed that, although the organoclay was not dispersed well in the PAE matrix, it was dispersed in the PAA matrix on a nanometer scale. The clay particles remained well dispersed after the PAA film was thermally imidized. The CTE of the polyimide film obtained was 23% lower than that of a similar film that did not contain the organoclay. The temperature at which the polyimide underwent a 5% weight loss when subjected to TGA in nitrogen was also increased by 13%. The photosensitive PAA/clay nanocomposite showed a sensitivity of 301mJ/cm2 and a contrast of 1.66 when a 0.2wt% tetramethylammonium hydroxide developer was used. A line/space pattern with a resolution of 10 μm was obtained from this formulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call