Abstract

An approach to control cell adhesion using a photocleavable molecule on chitosan has been developed and studied. Photocleavable 4,5-dimethoxy-2-nitrobenzyl chloroformate (NVOC) was introduced into chitosan to control the surface properties. The two UV illuminations with a photomask controlled the cleavage of NVOC and the presentation of deprotected amines on one chitosan surface spatially and temporally. The following immobilizations of cell repulsive poly(ethylene glycol) after the first illumination and cell adhesive sequence Arg–Gly–Asp–Ser (RGDS) after the second illumination on the surface helped create surface heterogeneity. Fourier transform infrared spectroscopy (FTIR), water contact angle, and UV–visible spectroscopy were used to characterize the surfaces and photoactivation during the process. To study the cell attachment and morphology on our designed surfaces, NIH/3T3 fibroblast cell was used. Cell number and morphology on the surfaces were investigated. The cell study demonstrated the feasibility of the surfaces on the control of cell adhesion and the formation of cell patterns by UV illuminations and the following immobilizations of different biomolecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.