Abstract

Multiheme cytochromes possess closely packed redox-active hemes arranged as chains spanning the tertiary structure. Here we describe five variants of a representative multiheme cytochrome engineered as biohybrid phototransducers for converting light into electricity. Each variant possesses a single Cys sulfhydryl group near a terminus of the heme chain, and this was efficiently labelled with a RuII (2,2'-bipyridine)3 photosensitiser. When irradiated in the presence of a sacrificial electron donor (SED) the proteins exhibited different types of behaviour. Certain proteins were rapidly and fully reduced. Other proteins were rapidly semi-reduced but resisted complete photoreduction. These findings reveal that photosensitised multiheme cytochromes can be engineered to act as resistors, with intrinsic regulation of light-driven electron accumulation, and also as molecular wires with essentially unhindered photoreduction. It is proposed that the observed behaviour arises from interplay between the site of electron injection and the distribution of heme reduction potentials along the heme chain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.