Abstract

Polarized photolysis experiments have been performed on the carbon monoxide complex of myoglobin to assess the effects of photoselection on the kinetics of ligand rebinding and to investigate the reorientational dynamics of the heme plane. The results are analyzed in terms of the optical theory developed in the preceding paper by Ansari and Szabo. Changes in optical density arising from rotational diffusion of the photoselected population produce large deviations from the true geminate ligand rebinding curves if measurements are made with only a single polarization. The apparent ligand rebinding curves are significantly distorted even at photolysis levels greater than 90%. These deviations are eliminated by obtaining isotropically-averaged optical densities from measurements using both parallel and perpendicular polarizations of the probe pulse. These experiments also yield the optical anisotropy, which gives a novel method for accurately determining the degree of photolysis, as well as important information on the reorientational dynamics of the heme plane. The correlation time for the overall rotational diffusion of the molecule is obtained from the decay of the anisotropy. The anisotropy prior to rotational diffusion is lower than that predicted for a rigidly attached, perfectly circular absorber, corresponding to an apparent order parameter of S = 0.95 +/- 0.02. Polarized absorption data on single crystals suggest that the decreased anisotropy results more from internal motions of the heme plane which take place on time scales shorter than the duration of the laser pulse (10 ns) than from out-of-plane polarized transitions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.