Abstract
Photorhabdus luminescens, a Gram-negative bacterium, secretes a protein toxin (PL toxin) that is toxic to insects. In this study, the effects of the PL toxin on large receptor-free unilamellar phospholipid vesicles (LUVs) of Manduca sexta and on brush border membrane vesicles (BBMVs) of M. sexta and Tenebrio molitor were examined. Cry1Ac served as a positive control in our experiments due to its known channel-forming activity on M. sexta. Voltage clamping assays with dissected midguts of M. sexta and T. molitor clearly showed that both Cry1Ac and PL toxin caused channel formation in the midguts, although channel formation was not detected for T. molitor midguts under Cry1Ac and it was less sensitive to PL toxin than to Cry1Ac for M. sexta midguts. Calcein release experiments showed that both toxins made LUVs (unilamellar lipid vesicles) permeable, and at some concentrations of the toxins such permeabilizing effects were pH-dependent. The lowest concentrations of PL toxin were more than 600-fold and 24-fold lower to induce BBMV permeability of T. molitor and M. sexta than those to induce calcein release from LUVs of M. sexta. These further support that PL toxin is responsible for channel formation in the larvae midguts. The lower concentration to induce permeability in BBMV than in LUV is, probably, attributable to that BBMV has PL toxin receptors that facilitate the toxin to induce permeabilization. Furthermore, our results indicate that the effects of PL toxin on BBMV permeability of M. sexta were not significantly influenced by Gal Nac, but those of Cry1Ac were. This implies that PL toxin and Cry1Ac might use different molecular binding sites in BBMV to cause channel formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.