Abstract

A two-dimensional Cd(ii) metal-organic framework (MOF) was constructed from a tris(pyridinium)-based hexacarboxylate zwitterionic ligand. The MOF shows a novel fashion of 2-fold 2D → 2D parallel entanglement. It is the entanglement that dictates close interlayer contacts between carboxylate (electron donor) and pyridinium (acceptor), which in turn impart the MOF with reversible photochromic properties through photoinduced electron transfer (PET). This is an extension of PET-based photochromism from bipyridinium to multipyridinium compounds. Thanks to the photoresponsive behaviour, the fluorescence of the MOF can be reversibly modulated or switched by photoirradiation. Besides, the fluorescence of the water-stable MOF in aqueous dispersion is very sensitive to nitrofuran antibiotics with high selectivity, and therefore the MOF is a good candidate of efficient and regenerable sensing material for determination of the antibiotics in water media.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.