Abstract

High-quality and millimeter-sized perovskite single crystals of CsPbBr3 and Cs4PbBr6 were prepared in organic solvents and studied for correlation between photocurrent generation and photoluminescence (PL) emission. The CsPbBr3 crystals, which have a 3D perovskite structure, showed a highly sensitive photoresponse and poor PL signal. In contrast, Cs4PbBr6 crystals, which have a 0D perovskite structure, exhibited more than 1 order of magnitude higher PL intensity than CsPbBr3, which generated an ultralow photoresponse under illumination. Their contrasting optoelectrical characteristics were attributed to different exciton binding energies, induced by coordination geometry of the [PbBr6]4- octahedron sublattices. This work correlated the local structures of lead in the primitive perovskite and its derivatives to PL spectra as well as photoconductivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call