Abstract

We used an advanced radiogasometric method to study the effects of short-term changes in CO2 concentration ([CO2]) on the rates and substrates of photorespiratory and respiratory decarboxylations under steady-state photosynthesis and in the dark. Experiments were carried out on Plantago lanceolata, Poa trivialis, Secale cereale, Triticum aestivum, Helianthus annuus and Arabidopsis thaliana plants. Rates of photorespiration and respiration measured at a low [CO2] (40 micromol mol(-1)) were equal to those at normal [CO2] (360 micromol mol(-1)). Under low [CO2], the substrates of decarboxylation reactions were derived mainly from stored photosynthates, while under normal [CO2] primary photosynthates were preferentially consumed. An increase in [CO2] from 320 to 2300 micromol mol(-1) brought about a fourfold decrease in the rate of photorespiration with a concomitant 50% increase in the rate of respiration in the light. Respiration in the dark did not depend on [CO2] up to 30 mmol mol(-1). A positive correlation was found between the rate of respiration in the dark and the rate of photosynthesis during the preceding light period. The respiratory decarboxylation of stored photosynthates was suppressed by light. The extent of light inhibition decreased with increasing [CO2]; no inhibition was detected at 30 mmol mol(-1) CO2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.