Abstract

Two monometallic and three bimetallic ruthenium acetonitrile (RuMeCN) complexes are presented and fully characterized. All of them are built from the same skeleton [FTRu(bpy)(MeCN)]2+, in which FT is a fluorenyl-substituted terpyridine ligand and bpy is the 2,2'-bipyridine. The crystal structure of [FTRu(bpy)(MeCN)](PF6)2 is presented. A careful spectroscopic analysis allows establishing that these 5 RuMeCN complexes can be identified as the product of the photoreaction of 5 related RuNO complexes, investigated as efficient nitric oxide (NO) donors. Based on this set of complexes, the mechanism of the NO photorelease of the bimetallic complexes has been established through a complete investigation under irradiations performed at 365, 400, 455, and 490 nm wavelength. A two-step (A → B → C) kinetic model specially designed for this purpose provides a good description of the mechanism, with quantum yields of photorelease in the range 0.001-0.029, depending on the irradiation wavelength. In the first step of release, the quantum yields (ϕAB) are always found to be larger than those of the second step (ϕBC), at any irradiation wavelengths.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call