Abstract

Some phagotrophic organisms can retain chloroplasts of their photosynthetic prey as so-called kleptochloroplasts and maintain their function for shorter or longer periods of time. Here we show for the first time that the dinoflagellate Dinophysis acuta takes control over “third-hand” chloroplasts obtained from its ciliate prey Mesodinium spp. that originally ingested the cryptophyte chloroplasts. With its kleptochloroplasts, D. acuta can synthesize photosynthetic as well as photoprotective pigments under long-term starvation in the light. Variable chlorophyll fluorescence measurements showed that the kleptochloroplasts were fully functional during 1 month of prey starvation, while the chlorophyll a-specific inorganic carbon uptake decreased within days of prey starvation under an irradiance of 100 μmol photons m-2 s-1. While D. acuta cells can regulate their pigmentation and function of kleptochloroplasts they apparently lose the ability to maintain high inorganic carbon fixation rates.

Highlights

  • Some free-living phagotrophic protists sequester chloroplasts from their algal prey and utilize them for shorter or longer time; a life style that is common among ciliates, dinoflagellates and radiolarians (e.g., Stoecker et al, 2009; Johnson, 2011)

  • We investigated the photoregulation potential of D. acuta cells deprived of prey while being subjected to low irradiance to test whether photoregulation or photoacclimation occurs in sequestered chloroplasts of cryptophyte origin

  • No ciliate prey cells were observed during enumeration of Dinophysis cells for the entire duration the prey starvation experiment

Read more

Summary

Introduction

Some free-living phagotrophic protists sequester chloroplasts from their algal prey and utilize them for shorter or longer time; a life style that is common among ciliates, dinoflagellates and radiolarians (e.g., Stoecker et al, 2009; Johnson, 2011) In many such species, other prey cell organelles are retained as well. Mesodinium spp., ingest certain cryptophyte prey species and sequester the chloroplasts (Johnson et al, 2006; Moeller et al, 2011; Hansen et al, 2012), and a number of other prey cell organelles, such as mitochondria, the prey nucleus, and the nucleomorph (a reduced former nucleus of an earlier endosymbiont found in cryptophytes). Red-pigmented Mesodinium spp. display photoacclimation, i.e., increases in cellular photosynthetic pigments at low irradiance and a change in photosynthesis vs. irradiance response curves (Johnson et al, 2006; Moeller et al, 2011)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call