Abstract

Photorefractive (PR) performances are affected by the components of the photoconductor, sensitizer, nonlinear optical dye, and plasticizer. A photoconductor with high hole mobility promises a faster response time, whereas it induces higher photoconductivity, which leads to easy dielectric breakdown. Adding a second electron trap is effective in controlling photoconductivity. In this study, the role of a second electron trap 1,3,5-tri[(3-pyridyl)-phen-3-yl]benzene (TmPyPB) was investigated in a PR composite consisting of a photoconductor of poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] with a high hole mobility, a nonlinear optical chromophore of piperidinodicyanostyrene, a plasticizer of (2,4,6-trimethylphenyl)diphenylamine, and a sensitizer of [6,6]-phenyl C61 butyric acid-methyl ester. The minimum time response with the maximum optical diffraction efficiency and sensitivity was measured at a 1 wt % content of TmPyPB. These results were consistent with the number of charge carriers trapped per unit volume and per unit time Nc (cm–3 s–1), which is defined as the ratio between the initial trap density Ti (cm–3) and response time τ (s), at a 1 wt % content of TmPyPB. A faster response time of 149 μs, optical diffraction of 24.1% (external diffraction of 4.8%), and a sensitivity of 2746 cm2 J–1 were measured at 50 V μm–1 for the sample with 1 wt % TmPyPB. High loading of 5 wt % TmPyPB led to a large decrease in photoconductivity and effectively suppressed the dielectric breakdown under a stronger electric field, whereas a slower response time with lower diffraction efficiency was observed for optical diffraction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call