Abstract

Light-induced refractive-index changes, bulk-photovoltaic current densities, and photoconductivities of photorefractive iron-doped lithium niobate crystals (iron concentrations between 0.02 and 0.17 wt. %) are investigated in detail using visible and near-infrared light. It turns out that the one-center model predicts the material performance correctly for small iron concentrations (cFe<0.06 wt. % Fe2O3), only. A strong increase of the photoconductivity for higher doping levels limits the space-charge fields. Refractive-index changes up to 7×10-4 for green and 2.8×10-4 for near-infrared ordinarily polarized light are obtained. The corresponding hologram multiplexing numbers are 11 for green and 5 for near-infrared light.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.