Abstract
We report the photorefractive performance of a polymer composite sensitized by CdSe/ZnS core/shell nanoparticles, and also comprising poly(N-vinylcarbazole) and an electro-optic chromophore. The nanoparticles are characterized by absorption and photoluminescence spectroscopy, elemental analysis, transmission electron microscopy, and powder x-ray diffraction. The electro-optic response of the composite is measured independently of the photorefractive effect by transmission ellipsometry. An asymmetric two-beam coupling gain of 30.6+/-0.4 cm(-1) is obtained, confirming photorefractivity. Degenerate four-wave mixing is used to assess photorefractive performance and, at a poling field of 70 V microm(-1), yields a diffraction efficiency of 4.21%+/-0.03%, a holographic contrast of 3.05 x 10(-4)+/-1 x 10(-6), a space-charge rise time of 25+/-2 s, and a sensitivity of 4.7 x 10(-5)+/-4 x 10(-6) cm3 J(-1). These results constitute a significant improvement on the performance of previous nanoparticle-sensitized photorefractive polymer composites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.