Abstract

In this chapter, we first delineate a general theory for optical spatial solitons propagating in a biased photorefractive crystal circuit. We shall then investigate the validity of the theory for various different types and configurations of the constituent photorefractive crystals. The approach to deriving the coupled space charge fields in both the crystals of the photorefractive crystal circuit will be discussed. The intensity profile and propagation of spatial soliton in each crystal can affect the intensity profile and propagation of the spatial soliton in the other crystal. The input intensity of each soliton and the temperature of each crystal exert a coupling effect between the individual solitons in the two crystals. These phenomena are discussed in detail taking relevant examples. This type of separate coupling for the two solitons exists because of the light induced current in each photorefractive crystal flowing through the circuit. A brief idea about further reading for the stabilities and dynamical evolution of such separately coupled solitons will be presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.