Abstract

Schwertmannite (SCH) as an adsorbent for Cr(VI) removal has been widely investigated. However, there are limited reports on photoreduction driven dissolution of SCH loaded with Cr(VI) (SCH–Cr(VI)) and the fate of Cr(VI) in the presence of dissolved organic matter (DOM). In this study, the effect of tartaric acid (TA) on the stability of SCH–Cr(VI) exposed to simulated solar radiation was examined. The results demonstrated that TA could greatly enhance the release of the dissolved total Fe (TFe) from SCH–Cr(VI). Conversely, the dissolved total Cr (TCr) obviously declined. Low pH promoted the liberation of TFe and TCr. The presence of ions including Al3+, Ca2+, K+ and CO32− exerted different impact on the photoreductive dissolution of SCH–Cr(VI) induced by TA. On the basis of the species distribution of iron and chromium and the characterization of the solid samples, the underlying mechanism is proposed for the transformation and the fate of Cr(VI). Cr(VI) was reduced to Cr(III) by Fe(II) generated from Fe(III)-TAn via ligand to metal charge transfer. The produced Cr(III) was adsorbed by SCH or co-precipitates with Fe(III). Thus, this study helps us to gain an insight into the mobility and fate of Cr(VI) in acid mining drainage containing DOM, and will help design remediation strategies for Cr contamination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.