Abstract

CO2 reduction under simulated sunlight over photocatalysts has become an attractive researcher area recently. In this work, carbon nitride compounds modified by TiO2 nanoparticles (TNPs) have been used for the photoreduction of CO2 in the presence of CH4 at room temperature. Briefly, a series of noble-metal-free TNP-graphitic-carbon nitride (g-C3N4, also abbreviated CN) photocatalysts with different TNPs loadings and calcination temperatures have been synthesized by a wet-chemical method. The characterization results of XRD, FTIR, SEM, TEM, BET, XPS, CO2 Adsorption, UV-vis, and PL demonstrate that the BET surface area and CO2 adsorption capacity have been improved after the calcination. Besides, the g-C3N4 has been successfully coupled with the TNPs and a heterojunction has formed at their interface. These characters contribute to increase the photocatalytic activity of TNPs-CN toward reducing CO2 in the presence of CH4, and its’ performance is better than bare g-C3N4, Titania (P25)–CN, MgO–CN, or Cu2O–CN. Orthogonal experiments are then carried out to investigate the sensitivity factors and optimum conditions. The sensitivity results show that the reaction pressure makes little difference on the photocatalysis results, which verifies the photoinduced CO2–CH4 reaction has a tiny change in gas volume. In addition, under the optimum conditions, the turnover frequency (TOF) of CO after 4 h reaction can reach 9.98 μmol g-cat.−1 h−1, and traces of ethane and ethylene have been detected during the reactions. In addition, surface acetate and carbonaceous deposit are found on the (20)TNPs-CN/450 surface after continuous 24 h irradiation under the optimum conditions, which resulting in the inactivation of the catalyst. Finally, possible reaction mechanisms have been proposed based on the results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.