Abstract

The photoreduction of 4,4'-bipyridine (44BPY) by diazabicyclo[2.2.2]octane and triethylamine (TEA) is investigated by using picosecond transient absorption and time-resolved resonance Raman spectroscopy in various acetonitrile-water mixtures. The results are interpreted on the basis of a preferential solvation effect resulting from the presence of a specific interaction between 44BPY and water by hydrogen bonding. Below 10% water, the free 44BPY species is dominant and leads upon photoreduction to a contact ion pair that undergoes efficient intrapair proton transfer if TEA is the amine donor. Above 10% water, most of the 44BPY population is H-bonded and leads upon photoreduction to a hydrated ion pair in which the intrapair proton transfer is inhibited. Instead, the 44BPY(-*) species is protonated by water through the hydrogen bond with a rate constant that increases by more than 3 orders of magnitude on going from 10% to 100% water. The dependence of this rate constant on the solvent mixture composition suggests that the reaction of intracomplex proton transfer is controlled by the hydration of the residual OH(-) species by three molecules of water, leading to a trihydrated HO(-)(H(2)O)(3) species.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.