Abstract

The photoreduction of mercury (Hg) in clouds is crucial for determining global Hg cycling. The recently-developed isotope approach provides new insight into the fate of atmospheric Hg, however, limited data have been reported on the dynamics of Hg isotopes in clouds. This study presented the isotopic compositions of dissolved mercury (DHg) and particulate mercury (PHg) in cloud water collected at Mt. Tai (1545 m a.s.l.) in eastern China during summer 2021. Both DHg and PHg exhibited positive mass-independent fractionation of odd isotopes (odd-MIF, denoted as Δ199Hg), with averaged Δ199Hg values of 0.83 ± 0.34‰ and 0.20 ± 0.11‰, respectively. This high odd-MIF likely resulted from aqueous photoreduction in clouds, with DHg being more susceptible to photolysis than PHg. Our findings indicated that the photoreduction was promoted by sunlight and influenced by the chemical compositions of cloud water that controlled the Hg(II) speciation. The isotope mixing model estimation revealed that particulate-bound Hg and reactive gaseous Hg constituted the principal sources of Hg in cloud water, accounting for 55% to 99% of the total, while gaseous element Hg also made a notable contribution. Additionally, cloud water samples with faster reduction rates of Hg(II) were located outside of the isotope mixing models, which indicated an enhanced photoreduction process in cloud water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.