Abstract

Photoredox decarboxylative cross-coupling via iridium–nickel dual catalysis has emerged as a valuable method for C(sp2)–C(sp3) bond formation. Herein we describe the application of a segmented flow (“microslug”) reactor equipped with a newly designed photochemistry module for material-efficient reaction screening and optimization. Through the deployment of a self-optimizing algorithm, optimal flow conditions for the model reaction were rapidly developed, simultaneously accounting for the effects of continuous variables (temperature and time) and discrete variables (base and catalyst). Temperature was found to be a critical parameter with regard to reaction rates and hence productivity in subsequent scale-up in flow. The optimized conditions identified at microscale were found to directly transfer to a Vapourtec UV-150 continuous flow photoreactor, enabling predictable scale-up operation at a scale of hundreds of milligrams per hour. This optimization approach was then expanded to other halide coupling par...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.