Abstract

The Arabidopsis COP1/SPA E3 ubiquitin ligase is a key negative regulator that represses light signaling in darkness by targeting transcription factors involved in the light response for degradation. The COP1/SPA complex consists of COP1 and members of the four-member SPA protein family (SPA1-SPA4). Genetic analysis indicated that COP1/SPA2 function is particularly strongly repressed by light when compared to complexes carrying the other three SPAs, thereby promoting a light response after exposure of plants to extremely low light. Here, we show that the SPA2 protein is degraded within 5–15 min after exposure of dark-grown seedlings to a pulse of light. Phytochrome photoreceptors are required for the rapid degradation of SPA2 in red, far-red and also in blue light, whereas cryptochromes are not involved in the rapid, blue light-induced reduction in SPA2 protein levels. These results uncover a photoreceptor-specific mechanism of light-induced inhibition of COP1/SPA2 function. Phytochrome A (phyA) is required for the severe blue light responsiveness of spa triple mutants expressing only SPA2, thus confirming the important role of phyA in downregulating SPA2 function in blue light. In blue light, SPA2 forms a complex with cryptochrome 1 (cry1), but not with cryptochrome 2 (cry2) in vivo, indicating that the lack of a rapid blue light response of the SPA2 protein is only in part caused by a failure to interact with cryptochromes. Since SPA1 interacts with both cry1 and cry2, these results provide first molecular evidence that the light-regulation of different SPA proteins diverged during evolution. SPA2 degradation in the light requires COP1 and the COP1-interacting coiled-coil domain of SPA2, supporting that SPA2 is ubiquitinated by COP1. We propose that light perceived by phytochromes causes a switch in the ubiquitination activity of COP1/SPA2 from ubiquitinating downstream substrates to ubiquitinating SPA2, which subsequently causes a repression of COP1/SPA2 function.

Highlights

  • As sessile organisms plants continuously monitor the ambient light conditions and adjust their growth and development with the aim to optimize growth and——seed production in a competitive environment

  • The CUL4-dependent COP1/SPA E3 ubiquitin ligase is a key negative regulator of light signaling whose function is repressed by light

  • We have identified a mechanism of light-induced COP1/SPA repression that is specific to phytochrome photoreceptors

Read more

Summary

Introduction

As sessile organisms plants continuously monitor the ambient light conditions and adjust their growth and development with the aim to optimize growth and——seed production in a competitive environment. Responses to these light parameters include seedling deetiolation (inhibition of hypocotyl elongation, opening of cotyledons and apical hook, greening), phototropism, shade avoidance, the accumulation of anthocyanins and the induction of flowering in particular day lengths [1]. Among the five phytochromes in Arabidopsis (phyA-phyE), the relatively light-stable phyB is the primary phytochrome controlling FR-reversible responses to R. These responses are named low fluence responses (LFR). Cryptochromes are encoded by two genes in Arabidopsis, CRY1 and CRY2 Both mediate seedling deetiolation in B, while primarily cry is responsible for B-induced flowering in long days [5,6]. UVR8 was identified as the long-sought UV-B receptor [11,12]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.