Abstract

To better understand how photoreceptors and their circuits support luminance-dependent spatial visual behavior. Grating thresholds for optokinetic tracking were measured under defined luminance conditions in mice with genetic alterations of photoreceptor activity. The luminance conditions that enable cone- and rod-mediated behavior, and the luminance range over which rod and cone functions overlap, were characterized. The AII amacrine pathway was found to support low-resolution and high-contrast function, with the rod-cone pathway supporting high-resolution and low-contrast function. Rods alone were also shown to be capable of driving cone-like spatial visual function, but only when cones were genetically maintained in a physiological dark state. The study defined how luminance signals drive rod- and cone-mediated spatial visual behavior and revealed new and unexpected contributions for rods that depend on an interaction between cone and rod systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.