Abstract
Changes in the Ca2+ concentration are thought to affect many processes, including signal transduction in a vast number of biological systems. However, only in few cases the molecular mechanisms by which Ca2+ mediates its action are as well understood as in phototransduction. In dark-adapted photoreceptor cells, the equilibrium level of cGMP is maintained by two opposing activities, such as phosphodiesterase (PDE) and guanylate cyclase (GC). Upon absorption of photons, rhodopsin-G-protein-mediated activation of PDE leads to a transient decrease in [cGMP] and subsequently to lowering of [Ca2+]. In turn, lower [Ca2+] increases net production of cGMP by stimulation of GC until dark conditions are re-established. This activation of GC is mediated by Ca2+ -free forms of Ca2+ -binding proteins termed GC-activating proteins (GCAPs). The last decade brought the molecular identification of GCs and GCAPs in the visual system. Recent efforts have been directed toward understanding the properties of GC at the physiological and structural levels. Here, we summarize the recent progress and present a list of topics of ongoing research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.