Abstract

We investigated the potential for photoreactivation to restore infectivity to sunlight-damaged natural viral communities in offshore (chlorophyll a, < 0.1 microgram liter-1), coastal (chlorophyll a, ca. 0.2 microgram liter-1), and estuarine (chlorophyll a, ca. 1 to 5 micrograms liter-1) waters of the Gulf of Mexico. In 67% of samples, the light-dependent repair mechanisms of the bacterium Vibrio natriegens restored infectivity to natural viral communities which could not be repaired by light-independent mechanisms. Similarly, exposure of sunlight-damaged natural viral communities to > 312-nm-wavelength sunlight in the presence of the natural bacterial communities restored infectivity to 21 to 26% of sunlight-damaged viruses in oceanic waters and 41 to 52% of the damaged viruses in coastal and estuarine waters. Wavelengths between 370 and 550 nm were responsible for restoring infectivity to the damaged viruses. These results indicate that light-dependent repair, probably photoreactivation, compensated for a large fraction of sunlight-induced DNA damage in natural viral communities and is potentially essential for the maintenance of high concentrations of viruses in surface waters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.