Abstract

The photoreaction of caged ATP, P3-[1-(2-nitrophenyl)ethyl]adenosine-5'-triphosphate, has been investigated using the time-resolved transient grating (TG) method. We found that a feature of the TG signal time profile depends sensitively on the grating wavenumber (q) after the photoexcitation of caged ATP. This q-dependent feature of the TG signal was interpreted based on a model where the ATP release rate is comparable to the molecular diffusion process. We found that the TG signals at various q can be consistently analyzed based on this model and the ATP release rate determined. The enthalpy and volume changes of the reaction have been determined by quantitative measurement of the grating and photoacoustic signals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.