Abstract

Phototropin (phot) is a blue light sensor involved in the light responses of several species from green algae to higher plants. Phot consists of two photoreceptive domains (LOV1 and LOV2) and a Ser/Thr kinase domain. These domains are connected by a hinge and a linker domain. So far, studies on the photochemical reaction dynamics of phot have been limited to short fragments, and the reactions of intact phot have not been well elucidated. Here, the photoreactions of full-length phot and of several mutants from Chlamydomonas reinhardtii (Cr) were investigated by the transient grating and circular dichroism (CD) methods. Full-length Cr phot is in monomeric form in both dark and light states and shows conformational changes upon photoexcitation. When LOV1 is excited, the hinge helix unfolds with a time constant of 77 ms. Upon excitation of LOV2, the linker helix unfolds initially followed by a tertiary structural change of the kinase domain with a time constant of 91 ms. The quantum yield of conformational change after adduct formation of LOV2 is much smaller than that of LOV1, indicating that reactive and nonreactive forms exist. The conformational changes associated with the excitations of LOV1 and LOV2 occur independently and additively, even when they are excited simultaneously. Hence, the role of LOV1 is not to enhance the kinase activity in addition to LOV2 function; we suggest LOV1 has different functions such as regulation of intermolecular interactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.