Abstract

Direct sun exposure is one of the most aggressive factors for human skin. Sun radiation contains a range of the electromagnetic spectrum including UV light. In addition to the stratospheric ozone layer filtering the most harmful UVC, human skin contains a photoprotective pigment called melanin to protect from UVB, UVA, and blue visible light. This pigment is a redox UV-absorbing agent and functions as a shield to prevent direct UV action on the DNA of epidermal cells. In addition, melanin indirectly scavenges reactive oxygenated species (ROS) formed during the UV-inducing oxidative stress on the skin. The amounts of melanin in the skin depend on the phototype. In most phenotypes, endogenous melanin is not enough for full protection, especially in the summertime. Thus, photoprotective molecules should be added to commercial sunscreens. These molecules should show UV-absorbing capacity to complement the intrinsic photoprotection of the cutaneous natural pigment. This review deals with (a) the use of exogenous melanin or melanin-related compounds to mimic endogenous melanin and (b) the use of a number of natural compounds from plants and marine organisms that can act as UV filters and ROS scavengers. These agents have antioxidant properties, but this feature usually is associated to skin-lightening action. In contrast, good photoprotectors would be able to enhance natural cutaneous pigmentation. This review examines flavonoids, one of the main groups of these agents, as well as new promising compounds with other chemical structures recently obtained from marine organisms.

Highlights

  • Direct sun exposure is one of the most aggressive factors for human skin

  • In addition to UV–Vis absorbing agents, recent sunscreens display other properties, such as water resistance, photostability, hydrating agents, sticking lotion to avoid reiterative application, etc. These points are involved in the measurement of the so-called Biological Effective Protection Factors (BEPFs), that are calculated for a determined UV-mediated skin response through transmission measurements according to the Diffey method [31] using the relative action spectrum [32]

  • The classification of sunscreens according to composition in organic, inorganic, and systemic products has been extensively examined in a number of reviews

Read more

Summary

Solar Radiation and Skin Photodamage

Skin is an important barrier to protect the human body from environmental stress. One of the more important factors causing this stress is sun exposure, due to the energy and free radical generating capacity of sunlight. UVB, UVA, and visible light are partially filtered by the atmosphere, but the percentage of solar radiation arriving at the Earth’s surface is significant. The penetrability is not uniform, and the most energetic UVB displays low penetrance due to the variety of cellular biochromes (mainly cutaneous pigments, proteins and nucleic acid) at the epidermis absorbing in this range of energy. In this way, the effects of UVB are mainly constrained to the epidermis. Induce apoptosis or lead to cancer appearance [5,7]

Natural Skin Pigments for Photoprotection
Sunscreens
Photoprotective and Antiaging Components in Sunscreens
Natural Compounds Related to Animal Melanin
Structure
Plants and Herbs
Marine Organisms and Microalgae
Findings
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.