Abstract

The CarH photoreceptor exploits of the light-sensing ability of coenzyme B12 ( adenosylcobalamin=AdoCbl) to perform its catalytic function, which includes large-scale structural changes to regulate transcription. In daylight, transcription is activated in CarH via the photo-cleavage of the Co-C5' bond of coenzyme B12. Subsequently, the photoproduct, 4',5'-anhydroadenosine (anhAdo) is formed inducing dissociation of the CarH tetramer from DNA. Several experimental studies have proposed that hydridocoblamin (HCbl) may be formed in process with anhAdo. The photolytic cleavage of the Co-C5' bond of AdoCbl was previously investigated using photochemical techniques and the involvement of both singlet and triplet excited states were explored. Herein, QM/MM calculations were employed to probe (1) the photolytic processes which may involve singlet excited states, (2) the mechanism of anhAdo formation, and (3) whether HCbl is a viable intermediate in CarH. Time-dependent density functional theory (TD-DFT) calculations indicate that the mechanism of photodissociation of the Ado ligand involves the ligand field (LF) portion of the lowest singlet excited state (S1) potential energy surface (PES). This is followed by deactivation to a point on the S0 PES where the Co-C5' bond remains broken. This species corresponds to a singlet diradical intermediate. From this point, the PES for anhAdo formation was explored, using the Co-C5' and Co-C4' bond distances as active coordinates, and a local minimum representing anhAdo and HCbl formation was found. The transition state (TS) for the formation of the Co-H bond of HCbl was located and its identity was confirmed by a single imaginary frequency of i1592 cm-1. Comparisons to experimental studies and the potential role of rotation around the N-glycosidic bond of the Ado ligand were discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.