Abstract

Despite the growing number of redox-active chromophores utilized to photoinduce oligonucleotide cleavage, detailed correlations between the degree of ground-state complexation and product yields have not been developed. To elucidate the specific role of singlet and triplet excited states in nucleotide photooxidation, the photochemical reactivities of N-(2-(N-pyridinium)ethyl)-1,8-naphthalene imide (NI) and N,N‘-bis-[2-(N-pyridinium)ethyl]-1,4,5,8-naphthalene diimide (NDI) with calf-thymus DNA have been explored as a function of ground-state complexation with the DNA polymer. Upon addition of calf-thymus DNA to a phosphate buffered solution of the naphthalene imide derivatives, distinct changes in the UV absorption spectrum of the chromophores, along with single isosbestic points, are observed. Analysis of these changes using the noncooperative model of McGhee and von Hippel yield association constants of (2.46 ± 0.42) × 104 M-1 and (7.78 ± 0.11) × 105 M-1 for NI and NDI, respectively. Pulsed 355 nm excita...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.