Abstract

This study' purposes are to synthesize molecularly imprinted polymer (MIP) with hydroxyethyl methacrylate (HEMA) and triethylene glycol dimethacrylate (TEGDMA) using p-xylene under ultraviolet curing at 405 nm for the recognition of hydroquinone (HQ) in aqueous medium. The template was extracted from the polymer with a mixture of methanol and acetic acid (9:1) by volume (v/v). The Fourier transform infrared (FTIR) spectrum of MIP (after wash) showed the absence of peak at the range of 840–860 cm−1, which represented the stretching outside the aromatic plane C–H at the para position (p-xylene). Field emission scanning electron microscope (FESEM) micrograph showed that the MIP had cavities compared to non-imprinted polymer (NIP). The MIP (MIP-Pxy) with ratio (monomer:crosslinker) 0.25 and 1.00% template gave the highest uptake of hydroquinone (HQ) in aqueous solution, which implied more specific recognition (highest KD value). The rebinding of HQ onto MIP-Pxy was best described by both isotherm (Langmuir and Freundlich) and kinetic model (pseudo-first and -second). The MIP was successfully synthesized using p-xylene, able to recognize HQ and was very selective to p-CP. Implication of the study, the synthesized MIP can be used for recognition and sensing materials for HQ and any similar molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.