Abstract

Abstracto‐Nitrobenzyl triphenylsilyl ehther/aluminum compound has been previously shown by the authors to act as catalyst in the photopolymerization of epoxides. The dependence of the structure of the silyl ether on the catalyst activity was examined. There were two steps in the photopolymerization. The first step (“Step 1”) is photodecomposition of the silyl ether to silanol. The second step (“Step 2”) is the initiation of polymerization by silanol and the aluminum compound. The introduction of an electron withdrawing group, Cl, CF3, on the benzene ring bonded to Si made the quantum yield of Step 1 low, however, the rate of Step 2 was increased. The low quantum yield of Step 1 was explained in terms of the rate of electron transfer that is controlled by the relative electron density between the CH2 and NO2 in the o‐nitrobenzyl group. The acceleration of Step 2 was explained in terms of an increase in silanol acidity that was promoted by the introduction of an electron withdrawing group. The overall rate of the photopolymerizatiol depends to a greater degree on the rate of Step 2 than on that of Step 1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call