Abstract

All eight 7,7′-(4-methylcoumarinyl) polymethylene dicarboxylates (3, 4) containing terminal photoreactive coumarin chromophores show strong fluorescence intensities at room temperature in dimethyl sulfoxide (DMSO) and CH2Cl2. After irradiation with 350 nm light for 2 h, the fluorescence characteristics of the dicarboxylates reveal their photopolymerization paths. On irradiation of the unsubstituted dicarboxylates (3) in DMSO, singlet excited state excimers are formed, leading to syn head-to-head coumarin dimer configuration. However, for all dicarboxylates in CH2Cl2, the dimerization of the coumarin chromophore proceeds via a triplet excited state in the presence of benzophenone to form the anti-configuration photoproducts. Further confirmations of the reaction mechanism are made by kinetic studies. At high concentration, photopolymerization of 7,7′-(4-methylcoumarinyl) polymethylene dicarboxylate (4c) obeys zero-order and first-order kinetics for coumarin chromophore and benzophenone, respectively. This is a powerful proof of the proposed mechanism of a triplet excited state reaction. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 2999–3008, 1997

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.