Abstract

In this study, to manufacture dental resin cement, Bis-GMA was used as a major ingredient, TEGDMA was used as a diluent, and camphoroquinone was used as a photoinitiator. Nanodiamonds were added to increase the bonding strength. After mixing Bis-GMA, HPMA, TEGDMA, BHT, BPO, and camphoroquinone (photoinitiator), nanodiamonds were added at a ratio of 2-3%, and polymerization was done after stirring for 24 hours. Photopolymerization was also carried out with Dentmate (LWDEX WL-090) by irradiation at a 440-480 nm wavelength and at about 1000 mW/cm2 intensity for about 40 seconds. As a result of the SEM measurement for the surface analysis, the nanodiamonds were found to have been evenly distributed at 80∼100 nm sizes. The physical properties of each combination were also evaluated to analyze the functionality of the prepared resin cement and as a result, the cultured cells (L929) in all the combinations (Ref., ND-1, and ND-2) had no cytotoxicity. Also the mean shear bond strengths of the control group using commercial resin cement was the range of 5.87∼6.72 MPa. And also, the mean flexural strength was about 94 MPa. These results indicate that the resin cement that was manufactured in this study will have no clinical problem when commercialized for dental practice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.