Abstract

In the head-mounted display environment for experiencing metaverse or virtual reality, conventional input devices cannot be used, so a new type of nonintrusive and continuous biometric authentication technology is required. Since the wrist wearable device is equipped with a photoplethysmogram sensor, it is very suitable for use for nonintrusive and continuous biometric authentication purposes. In this study, we propose a one-dimensional Siamese network biometric identification model using a photoplethysmogram. To maintain the unique characteristics of each person and reduce noise in preprocessing, we adopted a multicycle averaging method without using a bandpass or low-pass filter. In addition, to verify the effectiveness of the multicycle averaging method, the number of cycles was changed and the results were compared. Genuine and impostor data were used to verify the biometric identification. We used the one-dimensional Siamese network to verify the similarity between the classes and found that the method with five overlapping cycles was the most effective. Tests were conducted on the overlapping data of five single-cycle signals and excellent identification results were observed, with an AUC score of 0.988 and an accuracy of 0.9723. Thus, the proposed biometric identification model is time-efficient and shows excellent security performance, even in devices with limited computational capabilities, such as wearable devices. Consequently, our proposed method has the following advantages compared with previous works. First, the effect of noise reduction and information preservation through multicycle averaging was experimentally verified by varying the number of photoplethysmogram cycles. Second, by analyzing authentication performance through genuine and impostor matching analysis based on a one-dimensional Siamese network, the accuracy that is not affected by the number of enrolled subjects was derived.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.