Abstract
Photophysics and torsional dynamics of thiazole orange (TO) as a function of temperature have been studied in two deep eutectic solvents (DESs) using spectroscopic techniques. Two DESs are used as a solvent namely DES-I (choline chloride + urea, mole ratio 1: 2) and DES-II (N,N diethyl ethanol ammonium chloride + urea, mole ratio 1: 2). We explore the influence of DESs on the photophysical properties of TO. The fluorescence quantum yield and fluorescence lifetime of TO decreases with increasing temperature due to thermal deactivation. At higher temperature, fluorescence quantum yield of TO decreases in DESs may be due to the molecular rotor nature of TO, with the benzothiazole and quinoline ring of this dye being able to be rotated relative to each other in the excited state. In these solvents, the free volume idea was found to provide a truthful report of the solvent viscosity-temperature behavior, and the probe torsional dynamics. Fluorescence lifetime imaging microscopy (FLIM) was used to insight and observed the distribution of lifetime of TO in the surface of both DESs. The contact angle was determined to show the hygroscopic nature of the DESs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.