Abstract

Abstract Porphyrins are known to play a significant role in several biological systems. The research conducted for many years proved the versatility of applications involving porphyrin, often including the different areas of life [M. Gouterman, in: D. Dolphin (Ed.), The Porphyrins, vol. III, Academic Press, 1978, p. 1]. They can be used as active elements of biosensors, molecular switching devices and in non-linear optical materials, and in photodynamic cancer therapy as well. High quality optical materials with extremely good thermal and chemical stabilities can be produced by using a technique of silica sol–gel derived matrices [M. Rui Pereira, J.A. Ferreira, G. Hungrford, J. Photochem. Photobiol. 172 (2005) 7–17; J. Sokolnicki, R. Wiglusz, S. Radzki, A. Graczyk, J. Legendziewicz, Opt. Mater. 26 (2004) 199–206; R. Reisfeld, New materials for nonlinear optics. Optical and electronic phenomena in sol–gel glasses and modern applications, in: R. Reisfeld, C.K. Jorgensen (Eds.), Struct. Bond. 85 (1996) 99–147; B.G. Gregg, M.A. Fox, A.J. Bard, J. Am. Chem. Soc. 111 (1989) 3024; M. Ochsner, J. Photochem. Photobiol. 39 (1997) 1]. Recently, we have reported the photophysical behavior of the selected porphyrins contained within solution and entrapped in silica sol–gel derived matrices [J. Sokolnicki, R. Wiglusz, S. Radzki, A. Graczyk, J. Legendziewicz, Opt. Mater. 26 (2004) 199–206; R. Wiglusz, J. Legendziewicz, A. Graczyk, S. Radzki, P. Gawryszewska, J. Sokolnicki, J. Alloys Compd. 380 (2004) 396–404]. The present paper is devoted to photophysical characteristics of new – also chiral – porphyrins, and incorporated in silica sol–gel matrices; perspective chiral biosensors. In this paper, the synthesis and spectroscopic studies of porphyrin derivatives, at room and low temperatures in solutions and hybrid organic–inorganic materials obtained in different conditions by the sol–gel route are performed. An effect of different factors on emission efficiency is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.