Abstract
AbstractA robust process for fabricating intrinsic single‐photon emitters in silicon nitride is recently established. These emitters show promise for quantum applications due to room‐temperature operation and monolithic integration with technologically mature silicon nitride photonics platforms. Here, the fundamental photophysical properties of these emitters are probed through measurements of optical transition wavelengths, linewidths, and photon antibunching as a function of temperature from 4.2 to 300 K. Important insight into the potential for lifetime‐limited linewidths is provided through measurements of inhomogeneous and temperature‐dependent broadening of the zero‐phonon lines. At 4.2 K, spectral diffusion is found to be the main broadening mechanism, while spectroscopy time series reveal zero‐phonon lines with instrument‐limited linewidths.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.