Abstract

A comprehensive photophysical investigation has been carried out on a series of eight complexes of the type (diimine)Pt(-C=C-Ar)(2), where diimine is a series of 2,2'-bipyridine (bpy) ligands and -C=C-Ar is a series of substituted aryl acetylide ligands. In one series of complexes, the energy of the Pt --> bpy metal-to-ligand charge transfer (MLCT) excited state is varied by changing the substituents on the 4,4'- and/or the 5,5'-positions of the bpy ligand. In a second series of complexes the electronic demand of the aryl acetylide ligand is varied by changing the para substituent (X) on the aryl ring (X = -CF(3), -CH(3), -OCH(3), and -N(CH(3))(2)). The effect of variation of the substituents on the excited states of the complexes has been assessed by examining their UV-visible absorption, variable-temperature photoluminescence, transient absorption, and time-resolved infrared spectroscopy. In addition, the nonradiative decay rates of the series of complexes are subjected to a quantitative energy gap law analysis. The results of this study reveal that in most cases the photophysics of the complexes is dominated by the energetically low lying Pt --> bpy (3)MLCT state. Some of the complexes also feature a low-lying intraligand (IL) (3)pi,pi excited state that is derived from transitions between pi- and pi-type orbitals localized largely on the aryl acetylide ligands. The involvement of the IL (3)pi,pi state in the photophysics of some of the complexes is signaled by unusual features in the transient absorption, time-resolved infrared, and photoluminescence spectra and in the excited-state decay kinetics. The time-resolved infrared difference spectroscopy indicates that Pt --> bpy MLCT excitation induces a +25 to + 35 cm(-)(1) shift in the frequency of the C=C stretching band. This is the first study to report the effect of MLCT excitation on the vibrational frequency of an acetylide ligand.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call