Abstract
Unlike fluorinated benzenes with four or less fluorine atoms, pentafluorobenzene (PFB) and hexafluorobenzene (HFB) exhibit very small fluorescence yields and short fluorescence lifetimes. These emission anomalies suggest that the nature of the first excited singlet (S(1)) state may be different for the two classes of fluorobenzenes. Consistent with this conjecture, the time-dependent density-functional theory calculations yield S(1) state of pi pi(*) character for fluorinated benzenes with four or less F atoms, and S(1) state of pi sigma(*) character for PFB and HFB. The pi sigma(*) character of the S(1) state of PFB and HFB has been confirmed by laser-induced fluorescence, which reveal the presence of a new electronic transition to the red of the (1)pi pi(*) (L(b))<--S(0) transition, which can be identified with the predicted low-energy (1)pi sigma(*)<--S(0) absorption. The low fluorescence yields and the short fluorescence lifetimes of PFB and HFB are consistent with the small radiative decay rate of the (1)pi sigma(*) state and efficient S(1) (pi sigma(*))-->S(0) internal conversion between two electronic states of very different geometries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.