Abstract

We report an in-depth photophysical investigation of an asymmetric donor–acceptor–donor′ (D–A–D′) thermally activated delayed fluorescence (TADF) molecule (4-(9H-carbazol-9-yl)phenyl)(4-(10H-phenothiazin-10-yl)phenyl)sulfone and compare its photophysical properties to the parent symmetric D–A–D and D′–A–D′ molecules. These D–A–D type small molecules all show strong TADF. The work reveals how the relative orientations of D–A (D′–A) moieties favor reverse intersystem crossing (rISC) by forming stable charge transfer (CT) states. The key requirement for the efficient TADF emitters is to achieve a very small CT-local triplet state energy splitting, which is shown to be complex in the asymmetric molecule. Throughout the investigations, we show that in the asymmetric D–A–D′ system, even though ECT (D–A) > ECT (D′–A), no evidence of energy transfer from D–A to A–D′ is observed, nor from excited D to D′. This is ascribed to the near orthogonality of the D and D′ units and the very strong decoupling of the electro...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.