Abstract
Superatom clusters, Au25(SR)18, and the silver analogand alloys of the two metals have been extensively investigated for their structure, stability, photoluminescence, and electronic properties. One can readily tune the physicochemical properties by varying the ratio of Au/Ag or the thiol ligand to attain desired properties, such as enhanced emission, increased stability, and catalytic activity. Herein, excitation emission matrix spectroscopy and pump-probe transient absorption spectroscopy are used to show that the excited state dynamics of Au25(SR)18, Ag25(SR)18, and their alloys differ significantly despite having similar structures. State-resolved excited state behavior that is well documented for gold clusters is largely affected by the metal composition, becoming less pronounced for silver analogs, resulting in diversity in terms of their excited state energy and relaxation dynamics and resultant photophysical properties, such as emission.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.